Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.074
Filter
1.
Chem Commun (Camb) ; 60(35): 4723-4726, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38597243

ABSTRACT

Through controlling the ssDNA product length of rolling circle amplification with AcyNTP, here we develop a nanopore signal enhancement strategy (STSS), which can successfully transfer the short oligonucleotide targets into long ssDNAs with appropriate lengths that can generate significant translocation currents. By labelling the RCA product with tags such as tetrahedral structures and isothermal amplicons, the resolution, signal specificity, and target range of the STSS can be further extended.


Subject(s)
DNA, Single-Stranded , Nanopores , Nucleic Acid Amplification Techniques , DNA, Single-Stranded/chemistry
2.
Proc Natl Acad Sci U S A ; 121(16): e2400203121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38598338

ABSTRACT

Viral outbreaks can cause widespread disruption, creating the need for diagnostic tools that provide high performance and sample versatility at the point of use with moderate complexity. Current gold standards such as PCR and rapid antigen tests fall short in one or more of these aspects. Here, we report a label-free and amplification-free nanopore sensor platform that overcomes these challenges via direct detection and quantification of viral RNA in clinical samples from a variety of biological fluids. The assay uses an optofluidic chip that combines optical waveguides with a fluidic channel and integrates a solid-state nanopore for sensing of individual biomolecules upon translocation through the pore. High specificity and low limit of detection are ensured by capturing RNA targets on microbeads and collecting them by optical trapping at the nanopore location where targets are released and rapidly detected. We use this device for longitudinal studies of the viral load progression for Zika and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections in marmoset and baboon animal models, respectively. The up to million-fold trapping-based target concentration enhancement enables amplification-free RNA quantification across the clinically relevant concentration range down to the assay limit of RT-qPCR as well as cases in which PCR failed. The assay operates across all relevant biofluids, including semen, urine, and whole blood for Zika and nasopharyngeal and throat swab, rectal swab, and bronchoalveolar lavage for SARS-CoV-2. The versatility, performance, simplicity, and potential for full microfluidic integration of the amplification-free nanopore assay points toward a unique approach to molecular diagnostics for nucleic acids, proteins, and other targets.


Subject(s)
Nanopores , Zika Virus Infection , Zika Virus , Animals , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Primates/genetics , Zika Virus/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques
3.
Genome Res ; 34(3): 454-468, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38627094

ABSTRACT

Reference-free genome phasing is vital for understanding allele inheritance and the impact of single-molecule DNA variation on phenotypes. To achieve thorough phasing across homozygous or repetitive regions of the genome, long-read sequencing technologies are often used to perform phased de novo assembly. As a step toward reducing the cost and complexity of this type of analysis, we describe new methods for accurately phasing Oxford Nanopore Technologies (ONT) sequence data with the Shasta genome assembler and a modular tool for extending phasing to the chromosome scale called GFAse. We test using new variants of ONT PromethION sequencing, including those using proximity ligation, and show that newer, higher accuracy ONT reads substantially improve assembly quality.


Subject(s)
Nanopores , Humans , Sequence Analysis, DNA/methods , Nanopore Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Software , Genomics/methods
4.
Commun Biol ; 7(1): 491, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654143

ABSTRACT

Ribonucleotides represent the most common non-canonical nucleotides found in eukaryotic genomes. The sources of chromosome-embedded ribonucleotides and the mechanisms by which unrepaired rNMPs trigger genome instability and human pathologies are not fully understood. The available sequencing technologies only allow to indirectly deduce the genomic location of rNMPs. Oxford Nanopore Technologies (ONT) may overcome such limitation, revealing the sites of rNMPs incorporation in genomic DNA directly from raw sequencing signals. We synthesized two types of DNA molecules containing rNMPs at known or random positions and we developed data analysis pipelines for DNA-embedded ribonucleotides detection by ONT. We report that ONT can identify all four ribonucleotides incorporated in DNA by capturing rNMPs-specific alterations in nucleotide alignment features, current intensity, and dwell time. We propose that ONT may be successfully employed to directly map rNMPs in genomic DNA and we suggest a strategy to build an ad hoc basecaller to analyse native genomes.


Subject(s)
DNA , Nanopore Sequencing , Ribonucleotides , Nanopore Sequencing/methods , Ribonucleotides/genetics , DNA/genetics , Humans , Sequence Analysis, DNA/methods , Nanopores
5.
Biosensors (Basel) ; 14(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38667151

ABSTRACT

Solid-state nanopores have become a prominent tool in the field of single-molecule detection. Conventional solid-state nanopores are thick, which affects the spatial resolution of the detection results. Graphene is the thinnest 2D material and has the highest spatial detection resolution. In this study, a graphene membrane chip was fabricated by combining a MEMS process with a 2D material wet transfer process. Raman spectroscopy was used to assess the quality of graphene after the transfer. The mechanism behind the influence of the processing dose and residence time of the helium ion beam on the processed pore size was investigated. Subsequently, graphene nanopores with diameters less than 10 nm were fabricated via helium ion microscopy. DNA was detected using a 5.8 nm graphene nanopore chip, and the appearance of double-peak signals on the surface of 20 mer DNA was successfully detected. These results serve as a valuable reference for nanopore fabrication using 2D material for DNA analysis.


Subject(s)
DNA , Graphite , Helium , Nanopores , Graphite/chemistry , Spectrum Analysis, Raman , Biosensing Techniques , Microscopy
6.
ACS Appl Mater Interfaces ; 16(15): 18422-18433, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573069

ABSTRACT

DNA nanopores have emerged as powerful tools for molecular sensing, but the efficient insertion of large DNA nanopores into lipid membranes remains challenging. In this study, we investigate the potential of cell-penetrating peptides (CPPs), specifically SynB1 and GALA, to enhance the insertion efficiency of large DNA nanopores. We constructed SynB1- or GALA-functionalized DNA nanopores with an 11 nm inner diameter and visualized and quantified their membrane insertion using a TIRF microscopy-based single-liposome assay. The results demonstrated that incorporating an increasing number of SynB1 or GALA peptides into the DNA nanopore significantly enhanced the membrane perforation. Kinetic analysis revealed that the DNA nanopore scaffold played a role in prearranging the CPPs, which facilitated membrane interaction and pore formation. Notably, the use of pH-responsive GALA peptides allowed highly efficient and pH-controlled insertion of large DNA pores. Furthermore, single-channel recording elucidated that the insertion process of single GALA-modified nanopores into planar lipid bilayers was dynamic, likely forming transient large toroidal pores. Overall, our study highlights the potential of CPPs as insertion enhancers for DNA nanopores, which opens avenues for improved molecule sensing and the controlled release of cargo molecules.


Subject(s)
Cell-Penetrating Peptides , Nanopores , Kinetics , DNA/chemistry , Lipid Bilayers/chemistry
8.
Biochemistry (Mosc) ; 89(Suppl 1): S234-S248, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38621753

ABSTRACT

This review highlights operational principles, features, and modern aspects of the development of third-generation sequencing technology of biopolymers focusing on the nucleic acids analysis, namely the nanopore sequencing system. Basics of the method and technical solutions used for its realization are considered, from the first works showing the possibility of creation of these systems to the easy-to-handle procedure developed by Oxford Nanopore Technologies company. Moreover, this review focuses on applications, which were developed and realized using equipment developed by the Oxford Nanopore Technologies, including assembly of whole genomes, methagenomics, direct analysis of the presence of modified bases.


Subject(s)
Nanopore Sequencing , Nanopores , Sequence Analysis, DNA/methods , Biopolymers , High-Throughput Nucleotide Sequencing/methods
9.
ACS Synth Biol ; 13(4): 1382-1392, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38598783

ABSTRACT

The functional analysis of protein nanopores is typically conducted in planar lipid bilayers or liposomes exploiting high-resolution but low-throughput electrical and optical read-outs. Yet, the reconstitution of protein nanopores in vitro still constitutes an empiric and low-throughput process. Addressing these limitations, nanopores can now be analyzed using the functional nanopore (FuN) screen exploiting genetically encoded fluorescent protein sensors that resolve distinct nanopore-dependent Ca2+ in- and efflux patterns across the inner membrane of Escherichia coli. With a primary proof-of-concept established for the S2168 holin, and thereof based recombinant nanopore assemblies, the question arises to what extent alternative nanopores can be analyzed with the FuN screen and to what extent alternative fluorescent protein sensors can be adapted. Focusing on self-assembling membrane peptides, three sets of 13 different nanopores are assessed for their capacity to form nanopores in the context of the FuN screen. Nanopores tested comprise both natural and computationally designed nanopores. Further, the FuN screen is extended to K+-specific fluorescent protein sensors and now provides a capacity to assess the specificity of a nanopore or ion channel. Finally, a comparison to high-resolution biophysical and electrophysiological studies in planar lipid bilayers provides an experimental benchmark for future studies.


Subject(s)
Nanopores , Lipid Bilayers/metabolism , Liposomes , Peptides/metabolism , Ion Channels
10.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612388

ABSTRACT

Styryl dyes are generally poor fluorescent molecules inherited from their flexible molecular structures. However, their emissive properties can be boosted by restricting their molecular motions. A tight confinement into inorganic molecular sieves is a good strategy to yield highly fluorescent hybrid systems. In this work, we compare the confinement effect of two Mg-aluminophosphate zeotypes with distinct pore systems (the AEL framework, a one-dimensional channeled structure with elliptical pores of 6.5 Å × 4.0 Å, and the CHA framework, composed of large cavities of 6.7 Å × 10.0 Å connected by eight-ring narrower windows) for the encapsulation of 4-DASPI styryl dye (trans-4-[4-(Dimethylamino)styryl]-1-methylpyridinium iodide). The resultant hybrid systems display significantly improved photophysical features compared to 4-DASPI in solution as a result of tight confinement in both host inorganic frameworks. Molecular simulations reveal a tighter confinement of 4-DASPI in the elliptical channels of AEL, explaining its excellent photophysical properties. On the other hand, a singular arrangement of 4-DASPI dye is found when confined within the cavity-based CHA framework, where the 4-DASPI molecule spans along two adjacent cavities, with each aromatic ring sitting on these adjacent cavities and the polymethine chain residing within the narrower eight-ring window. However, despite the singularity of this host-guest arrangement, it provides less tight confinement for 4-DASPI than AEL, resulting in a slightly lower quantum yield.


Subject(s)
Nanopores , Coloring Agents , Motion , Upper Extremity
11.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612506

ABSTRACT

Positronium (Ps) is a valuable probe to investigate nanometric or sub-nanometric cavities in non-metallic materials, where Ps can be confined. Accessible experimental measurements concern the lifetime of trapped Ps, which is largely influenced by pick-off processes, depending on the size of the cavity as well as on the density of the electrons belonging to the surface of the host trap. Another relevant physical quantity is the contact density, that is the electron density at the positron position, which is usually found to be well below the vacuum value. Here, we review the principal models that have been formulated to account and explain for these physical properties of confined Ps. Starting with models, treating Ps as a single particle formulated essentially to study pick-off, we go on to describe more refined two-particle models because a two-body model is the simplest approach able to describe any change in the contact density, observed in many materials. Finally, we consider a theory of Ps annihilation in nanometric voids in which the exchange correlations between the electron of Ps and the outer electrons play a fundamental role. This theory is not usually taken into account in the literature, but it has to be considered for a correct theory of pick-off annihilation processes.


Subject(s)
Nanopores , CD40 Ligand , Electrons , Vacuum
12.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38608279

ABSTRACT

BACKGROUND: As adoption of nanopore sequencing technology continues to advance, the need to maintain large volumes of raw current signal data for reanalysis with updated algorithms is a growing challenge. Here we introduce slow5curl, a software package designed to streamline nanopore data sharing, accessibility, and reanalysis. RESULTS: Slow5curl allows a user to fetch a specified read or group of reads from a raw nanopore dataset stored on a remote server, such as a public data repository, without downloading the entire file. Slow5curl uses an index to quickly fetch specific reads from a large dataset in SLOW5/BLOW5 format and highly parallelized data access requests to maximize download speeds. Using all public nanopore data from the Human Pangenome Reference Consortium (>22 TB), we demonstrate how slow5curl can be used to quickly fetch and reanalyze raw signal reads corresponding to a set of target genes from each individual in large cohort dataset (n = 91), minimizing the time, egress costs, and local storage requirements for their reanalysis. CONCLUSIONS: We provide slow5curl as a free, open-source package that will reduce frictions in data sharing for the nanopore community: https://github.com/BonsonW/slow5curl.


Subject(s)
Nanopore Sequencing , Nanopores , Humans , Algorithms , Information Dissemination , Records
13.
J Med Virol ; 96(5): e29610, 2024 May.
Article in English | MEDLINE | ID: mdl-38654702

ABSTRACT

In 2022, a series of human monkeypox cases in multiple countries led to the largest and most widespread outbreak outside the known endemic areas. Setup of proper genomic surveillance is of utmost importance to control such outbreaks. To this end, we performed Nanopore (PromethION P24) and Illumina (NextSeq. 2000) Whole Genome Sequencing (WGS) of a monkeypox sample. Adaptive sampling was applied for in silico depletion of the human host genome, allowing for the enrichment of low abundance viral DNA without a priori knowledge of sample composition. Nanopore sequencing allowed for high viral genome coverage, tracking of sample composition during sequencing, strain determination, and preliminary assessment of mutational pattern. In addition to that, only Nanopore data allowed us to resolve the entire monkeypox virus genome, with respect to two structural variants belonging to the genes OPG015 and OPG208. These SVs in important host range genes seem stable throughout the outbreak and are frequently misassembled and/or misannotated due to the prevalence of short read sequencing or short read first assembly. Ideally, standalone standard Illumina sequencing should not be used for Monkeypox WGS and de novo assembly, since it will obfuscate the structure of the genome, which has an impact on the quality and completeness of the genomes deposited in public databases and thus possibly on the ability to evaluate the complete genetic reason for the host range change of monkeypox in the current pandemic.


Subject(s)
Genome, Viral , Metagenomics , Monkeypox virus , Monkeypox , Nanopore Sequencing , Whole Genome Sequencing , Humans , Genome, Viral/genetics , Metagenomics/methods , Nanopore Sequencing/methods , Monkeypox/epidemiology , Monkeypox/virology , Monkeypox virus/genetics , Monkeypox virus/isolation & purification , Whole Genome Sequencing/methods , Nanopores , DNA, Viral/genetics , High-Throughput Nucleotide Sequencing/methods
14.
Nat Commun ; 15(1): 2964, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580638

ABSTRACT

The high sequencing error rate has impeded the application of long noisy reads for diploid genome assembly. Most existing assemblers failed to generate high-quality phased assemblies using long noisy reads. Here, we present PECAT, a Phased Error Correction and Assembly Tool, for reconstructing diploid genomes from long noisy reads. We design a haplotype-aware error correction method that can retain heterozygote alleles while correcting sequencing errors. We combine a corrected read SNP caller and a raw read SNP caller to further improve the identification of inconsistent overlaps in the string graph. We use a grouping method to assign reads to different haplotype groups. PECAT efficiently assembles diploid genomes using Nanopore R9, PacBio CLR or Nanopore R10 reads only. PECAT generates more contiguous haplotype-specific contigs compared to other assemblers. Especially, PECAT achieves nearly haplotype-resolved assembly on B. taurus (Bison×Simmental) using Nanopore R9 reads and phase block NG50 with 59.4/58.0 Mb for HG002 using Nanopore R10 reads.


Subject(s)
Diploidy , Nanopores , Alleles , Haplotypes , Heterozygote , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods
15.
Shanghai Kou Qiang Yi Xue ; 33(1): 6-12, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38583018

ABSTRACT

PURPOSE: Bioactive magnesium ions were successfully incorporated into the nanoporous titanium base coating by micro-arc oxidation(MAO), and its physical properties and osteogenic effects were explored. METHODS: Non-magnesium-containing and magnesium-containing titanium porous titanium coatings(MAO, MAO-mg) were prepared by changing the composition of MAO electrolyte and controlling the doping of magnesium in porous titanium coatings. The samples were characterized by scanning electron microscope (SEM), roughness, contact angle and energy dispersive X-ray spectrometer (EDS). Mg2+ release ability of magnesium-doped nanoporous titanium coatings was determined by inductively coupled plasma/optical emission spectrometer(ICP-OES). The structure of the cytoskeleton was determined by live/dead double staining, CCK-8 detection of material proliferation-toxicity, and staining of ß-actin using FITC-phalloidin. The effects of the coating on osteogenic differentiation in vitro were determined by alizarin red (ARS), alkaline phosphatase (ALP) staining and real-time polymerase chain reaction (qRT-PCR). SPSS 25.0 software package was used for statistical analysis. RESULTS: The MAO electrolyte with magnesium ions did not change the surface characteristics of the porous titanium coating. Each group prepared by MAO had similar microporous structure(P>0.05). There was no significant difference in surface roughness and contact angle between MAO treatment group (MAO, MAO-mg)(P>0.05), but significantly higher than that of Ti group (P<0.05). With the passage of cell culture time, MAO-mg group promoted cell proliferation (P<0.05). MAO-mg group was significantly higher than other groups in ALP and ARS staining. The expression of Runx2 mRNA (P<0.05), ALP(P<0.05) and osteocalcin OCN(P<0.05) in MAO-mg group was significantly higher than that in Ti and MAO groups. CONCLUSIONS: MAO successfully prepared magnesium-containing nanoporous titanium coating, and showed a significant role in promoting osteogenic differentiation.


Subject(s)
Nanopores , Titanium , Titanium/pharmacology , Magnesium/chemistry , Magnesium/pharmacology , Osteogenesis/genetics , Electrolytes/pharmacology , Ions/pharmacology , Surface Properties , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry
16.
J Phys Chem Lett ; 15(14): 3900-3906, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38564363

ABSTRACT

Nanopores with two-dimensional materials have various advantages in sensing, but the fast translocation of molecules hinders their scale-up applications. In this work, we investigate the influence of -F, -O, and -OH surface terminations on the translocation of peptides through MXene nanopores. We find that the longest dwell time always occurs when peptides pass through the Ti3C2O2 nanopores. This elongated dwell time is induced by the strongest interaction between peptides and the Ti3C2O2 membrane, in which the van der Waals interactions dominate. Compared to the other two MXene nanopores, the braking effect is indicated during the whole translocation process, which evidence the advantage of Ti3C2O2 in nanopore sensing. Our work demonstrates that membrane surface chemistry has a great influence on the translocation of peptides, which can be introduced in the design of nanopores for a better performance.


Subject(s)
Nanopores , Nitrites , Transition Elements , Peptides
17.
ACS Nano ; 18(15): 10427-10438, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38556978

ABSTRACT

Protein translocation through nanopores holds significant promise for applications in biotechnology, biomolecular analysis, and medicine. However, the interpretation of signals generated by the translocation of the protein remains challenging. In this way, it is crucial to gain a comprehensive understanding on how macromolecules translocate through a nanopore and to identify what are the critical parameters that govern the process. In this study, we investigate the interplay between protein charge regulation, orientation, and nanopore surface modifications using a theoretical framework that allows us to explicitly take into account the acid-base reactions of the titrable amino acids in the proteins and in the polyelectrolytes grafted to the nanopore surface. Our goal is to thoroughly characterize the translocation process of different proteins (GFP, ß-lactoglobulin, lysozyme, and RNase) through nanopores modified with weak polyacids. Our calculations show that the charge regulation mechanism exerts a profound effect on the translocation process. The pH-dependent interactions between proteins and charged polymers within the nanopore lead to diverse free energy landscapes with barriers, wells, and flat regions dictating translocation efficiency. Comparison of different proteins allows us to identify the significance of protein isoelectric point, size, and morphology in the translocation behavior. Taking advantage of these insights, we propose pH-responsive nanopores that can load proteins at one pH and release them at another, offering opportunities for controlled protein delivery, separation, and sensing applications.


Subject(s)
Nanopores , Polymers/chemistry , Polyelectrolytes , Proteins/chemistry , Protein Transport
18.
Molecules ; 29(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474572

ABSTRACT

Monitoring etoposide is important due to its wide usage in anti-tumor therapy; however, the commonly used HPLC method is expensive and often requires complicated extraction and detection procedures. Electrochemical analysis has great application prospects because of its rapid response and high specificity, sensitivity, and efficiency with low cost and high convenience. In this study, we constructed a nanoporous gold (NPG)-modified GCE for the detection of etoposide. The electrochemical oxidation of etoposide by NPG caused a sensitive current peak at +0.27 V with good reproductivity in 50 mM of phosphate buffer (pH 7.4). The relationship between etoposide concentration and peak current was linear in the range between 0.1 and 20 µM and between 20 and 150 µM, with a detection sensitivity of 681.8 µA mM-1 cm-2 and 197.2 µA mM-1 cm-2, respectively, and a limit of detection (LOD) reaching 20 nM. The electrode had a good anti-interference ability to several common anions and cations. Spiked recovery tests in serum, urine, and fermentation broth verified the excellent performance of the sensor in terms of sensitivity, reproducibility, and specificity. This may provide a promising tool for the detection of etoposide in biological samples.


Subject(s)
Antineoplastic Agents , Nanopores , Etoposide , Gold , Reproducibility of Results , Electrochemical Techniques/methods , Electrodes
19.
Methods Mol Biol ; 2778: 345-366, 2024.
Article in English | MEDLINE | ID: mdl-38478288

ABSTRACT

Biological nanopores incorporated into synthetic membranes are widely used for single-molecule analytical applications such as DNA sequencing. The ability to engineer custom membrane proteins with a pore would allow the generation of a multitude of nanopores for the sensing/sequencing of small molecules and (bio)polymers. The de novo design of transmembrane ß-barrel pores has recently enabled the generation of nanopores with custom size, shape, and properties. In this chapter, I describe the rationale of transmembrane ß-barrel design and computational methods to assemble the backbones, design sequences, and select the designs for experimental validation.


Subject(s)
Membrane Proteins , Nanopores
SELECTION OF CITATIONS
SEARCH DETAIL
...